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The flow of a rarefied gas past a sphere is considered. The Crooke equation is solved 
by the method of integral iterations. An example is used to demonstrate the convergence 
of the iterative process. The drag of the sphere is calculated ; the density, velocity, and 

temperature distributions in the flow zone are determined, 

Let us consider a sphere of radius II,, with the surface temperature Tw in the path of 
a gas stream of constant velocity lYm. density ~~~ and temperature 7’,. We attach the 

coordinate system .TZ to the sphere as shown in Fig. 1. 

The Crooke equation for the distribution function ! (x. u) 
is of the form [l] 

Fig. 1 
(w is a constant for the given gas) 

We shall think of a gas as consisting of solid spherical molecules for which 0 E 0.5. 
We stipulate that the distribution function of the molecules travelling towards the 

sphere satisfies the following condition at infinity : 

Jpm i --~LzzIzzxz 
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We assume diffuse reflection of the molecules at the surface of the sphere with the 
distribution function 

(:I) 

The density nLo of the molecules reflected from the body is not known in advance. It 

can be determined from the condition of nonleakage of the mass of the surface of the 

body, 
?~~~_(~~I/~~~.~~~~~~ (41 

where the integration must be carried out over the velocities of the particles striking 

the body. Let us introduce the dimensionless quantities 

u = U*Poo, x =;I ZH@Xx’, j z ,hco (2HT,)-‘~2 j* 

IL z n*no3, v, z-2 svoo) T===T'T,, TK,== T,"Tco, vr=v*um 

taking Pi = vmm as the characteristic velocity and the diameter of the sphere as 
the characteristic length. 

Next, let us rewrite Eq. (1) in these dimensionless parameters (omitting the asterisks), 
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Here K is the Knudsen number. Condition (2) can be rewritten as 

f,= 5c -‘A exp [- (u - s)*] (7) 

and conditions (3) and (4) for the particles reflected by the body as 

f,= f$+-exp?, ~~~-~~~~~u.~~~u (8) 

(integration is over the velocities of the particles inc. -!ent on the body). 

Thus, solution of the problem of flow past a sphere reduces to the solution of Eq. (5) 

under boundary conditions (7). (8). 
Let us rewrite Eq, (5) in integral form, 
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0 1 0 
where a is the unit vector which defines the direction of the particle velocity u. 

We convert to the polar coordinates T, a (Fig. 1) in the coordinate plane IZ , and to 

the spherical coordinate system U, 6, ‘p in the velocity space, taking the ray a as our 

axis 6 = 0 at each point T, a of the field. (We measure the angle Q from the z-axis). 
We denote the solid angle at which the sphere is seen from the point r by $2 (r) . This 

enables us to write the following expression for the quantity y, occurring in Eq. (9) : 

ya = v/o.25+ F2 - 2F cos p, U E R (F) 

(p= arc sin (rsinf?) - 6) 

Equations (g),(6) form a nonlinear system of equations with the unknowns n, v, T, f 
which we can solve by the method of iterations. The latter consists in substituting the 

known values of ,~“-r, v"-~, Z'*-' and the value of raGS” obtained from formula (8) for a 
known f”-r into the right side of Eq. (9) and then using the resulting value of the distri- 

bution function p to find nn, vn% Pand r$, in the next approximation. This iteration 
procedure is convenient because it does not require memorization of the distribution 

function. In each iteration we need memorize only the first four moments of the distri- 

bution function and the value of the reflected-particle density Q, at the body for each 
point of the coordinate grid. 

This reduces solution of the problem to the computation of a quadruple integral at 

each point of the field grid. Integration along the ray with the direction a in computing 
the distribution function f (r, a, u) can be carried out by the trapezoid method. 

The interval h of integration over y must be chosen @] on the basis of tl and Y, since 
the exponent in the integrand decays rapidly for small u and large Y . 

Taking the step h from the point F, a (g=O) along the ray coincident with the vector 
a (8, cp), we arrive at the point with the coordinates r’, (I’ , 
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r’ = p-/h”+ r2 - Ml cos 8, cos a’ = (1. cos c1 + h cm x) / r’ 

(coq = sina sin+ COST - coscp co&) 

The angle a is the angle between the r-axis and the vector x - ah. 

The axial symmetry ofthe problem enables us to choose the values of n”“, vzel, v~-‘, 

Tn-l for the integrand at the point r’, a’ from the totality of values of n,v,, v,, T in the 

plane ZZ. Linear interpolation can be used in choosing these values from tables. 
The triple integrals over the velocities involved in computing n, vX,vz, T can be cal- 

culated by the Monte-Carlo method. Accuracy of computation can be enhanced by sub- 

tracting from the ~tegrand the locally Maxwellian distribution function multiplied by 

1, us, tQ, (u - v) 2, respectively, with the parameters nnV1, v:-‘, VT-~,. P-t taken from 

the preceding iteration. 
We carried out our computations on a BESM-6 computer for the following values of 

the stream parameters: K = 1, s = 1 (M = 1.095) and T,,, = TK. The unperturbed- 
stream conditions were specified for r L= 5 h,. The grid in the plane r, a was chosen 

as follows: the interval Aa was set equal to ,0.125 ; the interval in r was Ar=O.O625b, 
up to r = 1.5 h,; for T > 1.5 A, we chose the interval Ar = 0.25 h,. 

The integrals over the velocities were computed for 1000 random points. Because of 
reduced dispersion the density n and the velocities uX, V, were computed to within -2% 

and the temperature +” to within .. 3%. (For K = 0.5 this degree of accuracy was attain- 
able with 506 drawings), 

Fig. 2 

The density n, the velocities vx, v,, the temperature T, and the density n, of the par- 
ticles reflected from the body were set equal to their values in free-molecular flow for 
the first iteration. The computations indicated slow convergence of the integral itera- 

tions. Arrival at a solution which did not vary in subsequent iterations required 14 itera- 
tions, Eight iterations were sufficient t~oughout the domain behind the sphere and within 
r < O.S& in front of the sphere, However, the density at a distance equal to the free path 
length inmnont of the sphere was 1.5 times larger after 14 iterations than it was after 
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eight iterations. 
Thus, the familiar slow convergence of integral iterations typical of one-dimensional 

problems also applies in the case of three-dimensional problems. 
The distribution curves of the density n / no3 and temperature 2’ / T, along the axis 

of symmetry in front of the body appear in Fig. 2a ; the corresponding distributions behind 

the body are shown in Fig.2b. Here and in the remaining figure the broken curves apply 
to free-molecular flow past the body. A shock wave does not arise for the stream para- 

meters considered. Collisions between particles in the stream have the effect of mark- 
edly increasing their density behind the body and decreasing it in front of the body. The 
stream becomes ~~~~bed further away from the body than in the case of free-mole- 

cular flow. This picture is valid for all directions a. We see this from Figs. 2c and 2d 
which show the limes of equal values of the density n I noo. The number 1 in Fig. 2~. 
denotes the curves for the values n / n, = 1.5, the number 2 the curves for n I nco = 1.25, 
and the number 3 the curves for n I nm = 1.i. For K = 1 the stream in front of the body 

not only becomes more dense; it also decelerates more rapidly, as we see from Fig.Se, 
which shows the vector velocity field around the sphere (and indicates the scale on which 

the velocities are plotted). 
It is interesting to note that the gas density at the distance r > 0.5 A, behind the 

sphere (Fig. 2d) is lower than that for a free-molecular stream (the number 1 identifies 
the curve for n I nm= 0.9.the number 2 the curve for n I no0 = 0.85, the number 3 the 

curve for n I n, = 0.5). 
The drag of the sphere was computed at each iteration. The third iteration yielded 

the value C, = 3.55, for the drag coefficient E the values in subsequent iterations fluc- 

tuated within the error bracket -3% of the drag computations. (For free-molecular flow 
past a sphere with M = 1.095 the drag coefficient turned out to be C, = 4.55.) 

The first results just presented indicate that the procedure described can be used for 
calculations over quite broad ranges of Mach and Knudsen numbers. 
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